
LC-3 Instructions Page 1 of 16

LC-3 Instruction Summary

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADD* 0001 DR SR1 0 0 0 SR2

ADD* 0001 DR SR1 1 imm5

AND* 0101 DR SR1 0 0 0 SR2

AND* 0101 DR SR1 1 imm5

BR 0000 n z p PCoffset9

JMP 1100 0 0 0 BaseR 0 0 0 0 0 0

JSR 0100 1 PCoffset11

JSRR 0100 0 0 0 BaseR 0 0 0 0 0 0

LD* 0010 DR PCoffset9

LDI* 1010 DR PCoffset9

LDR* 0110 DR BaseR offset6

LEA* 1110 DR PCoffset9

NOT* 1001 DR SR 1 1 1 1 1 1

RET 1100 0 0 0 1 1 1 0 0 0 0 0 0

RTI 1000 0 0 0 0 0 0 0 0 0 0 0 0

ST 0011 SR PCoffset9

STI 1011 SR PCoffset9

STR 0111 SR BaseR offset6

TRAP 1111 0 0 0 0 trapvect8

x20 = GetC
x21 = Out
x22 = PutS
x23 = In
x25 = Halt

Note: * indicates instructions that modify the condition codes (CC).

LC-3 Instructions Page 2 of 16

Instruction Assembler Format Example Operation
Addition
ADD

ADD dr, sr1, sr2
ADD dr, sr1, imm5

ADD R2, R3, R4
ADD R2, R3, #7

R2  R3 + R4
R2  R3 + 7

Logical AND
AND

AND dr, sr1, sr2
AND dr, sr1, imm5

AND R2, R3, R4
AND R2, R3, #7

R2  R3 AND R4
R2  R3 AND 7

Conditional Branch BR label

BRn label
BRz label
BRp label
BRnz label
BRnp label
BRzp label
BRnzp label

BRnz loop

BRnzp loop

Unconditional branch

Branch if the CC is negative or
zero.

Unconditional branch

Jump
JMP

JMP baseR

JMP foo Jump to foo.
PC  baseR

Jump to Subroutine
JSR / JSRR

JSR PCoffset11

JSRR baseR

JSR Sort

JSRR R2

R7  PC+1
Jump to Sort

R7  PC+1
Jump to address in R2

Load Direct
LD

LD dr, label LD R4, count R4  mem[count]

Load Indirect
LDI

LDI dr, label LDI R4, pointer R4  mem[mem[pointer]]

Load Base + Offset
LDR

LDR dr, baseR, offset6 LDR R4, R2, #10 R4  contents of mem[R2+#10]

Load Effective
Address
LEA

LEA dr, label LEA R4, foo R4  address of foo

Complement
NOT

NOT dr, sr NOT R4, R2 R4  NOT(R2)

Return from
Subroutine
RET

RET RET PC  R7

Return from Interrupt
RTI

RTI RTI NZP, PC  top two values
popped off stack

Store Direct
ST

ST sr, label ST R4, count mem[count]  R4

Store Indirect
STI

STI SR, label STI R4, pointer mem[mem[pointer]]  R4

LC-3 Instructions Page 3 of 16

Store Base + Offset
STR

STR sr, baseR, offset6 STR R4, R2, #10 mem[R2+#10]  R4

Operating System Call
TRAP

TRAP x20

TRAP x21

TRAP x22

TRAP x23

TRAP x25

GETC

OUT

PUTS

IN

HALT

Get a character from keyboard.
The character is not echoed
onto the screen. Its ASCII code
is copied into R0. The high
eight bits of R0 are cleared.

Write a character in R0[7:0] to
the screen

Write a string pointed to by R0
to the screen.

Print a prompt on the screen and
read a single character from
the keyboard. The character is
echoed onto the screen, and its
ASCII code is copied into R0.
The high eight bits of R0 are
cleared.

Halt execution

General purpose registers:
The LC-3 has eight 16-bit general purpose registers R0 to R7.

Special memory locations:
xF3FC CRT status register (CRTSR). The ready bit (bit 15) indicates if the video device is ready to

receive another character to print on the screen.
xF3FF CRT data register (CRTDR). A character written in the low byte of this register will be displayed

on the screen.
xF400 Keyboard status register (KBSR). The ready bit (bit 15) indicates if the keyboard has received a

new character.
xF401 Keyboard data register (KBDR). Bits [7:0] contain the last character typed on the keyboard.
xF402 Machine control register (MCR). Bit [15] is the clock enable bit. When cleared, instruction

processing stops.

Notations:
baseR – base register
dr – destination register
imm5 – a five-bit immediate value
mem[address] – denotes the contents of memory at the given address
PCoffset9 – a 9-bit immediate value used in an offset relative to the incremented PC
offset6 – a 6-bit immediate value used in a Base+Offset instruction
sr – source register
CC – condition code register (N,Z,P)

LC-3 Instructions Page 4 of 16

1. Operate instructions

ADD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 DR SR1 0 0 0 SR2

0 0 0 1 DR SR1 1 imm5

if (bit[5] == 0)
DR = SR1 + SR2

else
DR = SR1 + sign-extend(imm5)

set cc(DR)

Example:
ADD R2, R3, R4 ; R2  R3 + R4
ADD R2, R3, #7 ; R2  R3 + 7

AND
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 DR SR1 0 0 0 SR2

0 1 0 1 DR SR1 1 imm5

if (bit[5] == 0)
DR = SR1 AND SR2

else
DR = SR1 AND sign-extend(imm5)

set cc(DR)

NOT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 DR SR 1 1 1 1 1 1

There is no OR instruction. However, using DeMorgan’s law A OR B is:

A OR B = (A' AND B')'

LC-3 Instructions Page 5 of 16

2. Data movement instructions

Load and Store

Format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode DR or SR operand specifier

The load and store instructions are for copying data between a register and a memory location. The
load instruction copies data from a memory location to a register, whereas, the store instruction copies
data from a register to a memory location.

There are four different versions of the load and store instructions. They differ in how the address of
the memory location to be accessed is calculated. This is referred to as the different addressing modes of
the instruction.

Addressing Modes

Address modes specify how the memory address is calculated.

LC-3 Instructions Page 6 of 16

PC-Relative Addressing Mode
LD (0010) and ST (0011) specify the PC-relative addressing mode. It loads (LD) or stores (ST) the value
that is found in the memory address that is formed by sign-extending bits [8:0] to 16 bits and adding this
value to the incremented PC. The content in memory at this address is loaded into DR for the LD
instruction. For the ST instruction, the content of the SR is stored into the memory at this computed
address.

memory address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x4018 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1
 LD DR or SR PCoffset9

The PC is x4018. The incremented PC, i.e. PC+1, is x4019. The 9-bit offset in the instruction x1AF is
sign-extended to 16 bits giving FFAF. The incremented PC (x4019) is added to the sign-extended offset
(xFFAF) giving x3FC8. For the LD instruction, the value in memory location x3FC8 is loaded into
register R5. For the ST instruction, the value in R5 is stored into memory location x3FC8.

1010 1010 1010 1010

0010 101 1101011110100 0000 0001 1000

Memory Address Memory Content

0011 1111 1100 1000 1010 1010 1010 1010

R5LD

ST

1111 1111 1010 1111PC+1 0100 0000 0001 1001

PC sign extend to 16 bits

+
0011 1111 1100 1000

Memory Address Memory Content

Example
LD R5, offset ; R5  mem[PC+1+SEXT(offset)]
ST R5, offset ; mem[PC+1+SEXT(offset)]  R5

LC-3 Instructions Page 7 of 16

Base+Offset Addressing Mode
LDR (0110) and STR (0111) specify the base+offset addressing mode. The address of the operand is
obtained by adding the sign-extended 6-bit offset to the content of the specified base register. The result is
the effective address of the memory location to be accessed.

memory address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x4018 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1
 LDR DR or SR BaseR Offset6

1111 0000 1111 00001111 0000 1111 0000

0110 101 111 0111010100 0000 0001 1000

Memory Address Memory Content

0010 0011 0110 0010

0010 0011 0100 0101
R7

LDR

STR

 0010 0011 0100 0101
+ 0000 0000 0001 1101

0010 0011 0110 0010

R5

Example
LDR R5, R7, offset ;R5  mem[R7 + SEXT(offset)]
STR R5, R7, offset ;mem[R7 + SEXT(offset)]  R5

LC-3 Instructions Page 8 of 16

Indirect Addressing Mode
LDI (1010) and STI (1011) specify the indirect addressing mode. An address is first formed like the LD
and ST instructions. However, the contents from this memory location form the address of the operand to
be loaded or stored.

memory address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x4018 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1
 LDI DR or SR PCoffset9

0011 1101 1001 1001

1010 101 1101011110100 0000 0001 1000

Memory Address Memory Content

0011 1111 1100 1000

1111 1111 1010 1111PC+1 0100 0000 0001 1001

PC sign extend to 16 bits

+
0011 1111 1100 1000

Memory Address Memory Content

1010 1010 1010 10100011 1101 1001 1001 1010 1010 1010 1010

R5LDI

STI

Memory Address Memory Content

Example
LDI R5, offset ; R5  mem[mem[PC+1+SEXT(offset)]]
STI R5, offset ; mem[mem[PC+1+SEXT(offset)]]  R5

LC-3 Instructions Page 9 of 16

Immediate Addressing Mode
The LEA (1110) instruction loads the immediate value formed by adding the incremented PC to the sign-
extended 9-bit offset.

memory address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x4018 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1
 LEA DR PCoffset9

0010 101 1101011110100 0000 0001 1000

Memory Address Memory Content

0011 1111 1100 1000

R5

1111 1111 1010 1111PC+1 0100 0000 0001 1001

PC sign extend to 16 bits

+
0011 1111 1100 1000

Example
LEA R5, offset ; R5  PC+1+SEXT(offset)

LC-3 Instructions Page 10 of 16

3. Control Instructions

Branch
The conditional branch BR (0000) instruction format is

memory address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x4C18 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1
 BR N Z P PCoffset9

N, Z, and P stands for negative, zero, and positive. When a condition bit [11:9] (N, Z, P) is set, that
corresponding N, Z, or P condition code register in the datapath is checked. If that corresponding
condition code register is set (i.e. has the value 1, i.e. is true), then the PC is loaded with the value formed
by adding the incremented PC to the sign-extended 9-bit offset [8:0].

Note that the NZP bits [11:9] in the instruction encoding are different from the NZP condition code
registers in the datapath. Setting the NZP bits in the instruction encoding tells the controller to check the
corresponding NZP condition code register.

All instructions that modify a destination register will set the NZP condition code register depending on
whether the resulting value written into the destination register is negative, zero, or positive. For example,
if the resulting value is negative then the N condition code register will be set (and the Z and P registers
will be cleared). The instructions are ADD, AND, NOT, LD, LDI, LDR, and LEA. They are flagged with
an * in the summary table.

BR Label (unconditional jump) BRnz Label
BRn Label BRnp Label
BRz Label BRzp Label
BRp Label BRnzp Label (unconditional jump)

; loop 10 times

3000 AND R0,R0,#0

 ADD R0,R0,#10

 ; beginning of loop

loop ADD R0,R0,#-1 ; decrement by 1

 BRp loop ; loop back if positive

NOP (No Operation)

The NOP instruction is a special case of the BR instruction. The encoding is 0000000000000000. The
first four bits tell us that it is a BR instruction. The NZP bits are 000 which says don’t check any of the
CC registers. If you don’t check the CC then the condition will always be false, and no jump will be
performed. The net effect is nothing useful is done. Another way to do nothing is BR #0.

LC-3 Instructions Page 11 of 16

JMP
The unconditional jump JMP (1100) instruction format is

memory address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x4018 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
 JMP BaseR

Unconditionally jumps to the location specified by the contents of the base register.

Loads the PC with the value in the BaseR.

LC-3 Instructions Page 12 of 16

JSR (Jump Subroutine)
The Jump Subroutine instruction is used to implement function calls.
The JSR (0100) instruction format is

memory address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x4018 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1
 JSR PCoffset11

Bit 11 for the JSR instruction is a 1.
Save the incremented PC in R7; This is used to return from subroutine
Loads the PC with the value formed by adding the incremented PC to the sign-extended 11-bit offset
[10:0].

JSRR (Jump Subroutine Register)
The JSRR (0100) instruction format is

memory address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x4018 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
 JSRR BaseR

Bit 11 for the JSRR instruction is a 0.
Save the incremented PC in R7; This is used to return from subroutine
Loads the PC with the contents of the base register.

RET (Return)
The Return instruction is used to return from a function to the caller.
It simply copies R7 to the PC.
It is the same as JMP R7

memory address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x4018 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
 JMP BaseR

LC-3 Instructions Page 13 of 16

Trap
The Trap (1111) instruction invokes a system routine. When the OS is finished performing the service
call, the program counter is set to the address of the instruction following the TRAP instruction and the
program continues.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1

TRAP trap vector

R7  PC;
PC  mem[ZEXT(trapvector8)

Trap Number Assembler Name Description
x20 GETC Read a single character from the keyboard. The

character is not echoed onto the console. Its ASCII
code is copied into R0. The high eight bits of R0 are
cleared.

x21 OUT Write a character in R0[7:0] to the console.
x22 PUTS Write a string pointed to by R0 to the console.
x23 IN Print a prompt on the screen and read a single

character from the keyboard. The character is echoed
onto the console, and its ASCII code is copied into
R0. The high eight bits of R0 are cleared.

x25 HALT Halt execution and print a message on the console.

LC-3 Instructions Page 14 of 16

Compiler Directives
 Commands to tell the assembler what to do. These are not LC3 commands.
 All directives start with a period (.).

Directive Description Example
.ORIG Where to start placing code in memory .ORIG $3000
.FILL Allocate one memory location and initialize it

with a value.
 .FILL x30

.BLKW Allocate a block of memory (array). .BLKW #5

.STRINGZ Allocate and initialize memory with a null
terminated string.

 .STRINGZ “Hello World”

.END Tells assembler the end of your source listing .END

Examples

 .ORIG $3000

Thirty .FILL x30 ; allocate a memory location, initialize it to x30, and label it

Array .BLKW 20 #0 ; allocate 20 locations and initialize them all to zero.
 ; the starting location is labeled “Array”

Hi .STRINGZ “Hello World” ; allocate and initialize memory with the string “Hello World”

 .END

LC-3 Instructions Page 15 of 16

Examples

; Print Hello World on the console
 .ORIG x3000
 LEA R0, Hi
 PUTS
 HALT
Hi .STRINGZ "Hello World"
 .END

; Output the numbers from 0 to 9 to the console
 .ORIG x3000
 LD R3,Thirty ; R3 = x30
 AND R1,R1,#0 ; R1 = 0
Loop ADD R0,R1,#-10 ; subtract 10 to test for the ending condition
 BRz Stop
 ADD R0,R1,R3 ; convert R1 to ASCII
 OUT
 ADD R1,R1,#1
 BR Loop
Stop HALT
Thirty .FILL x30
 .END

Exercises

Write LC-3 assembly programs for the following:
1) Output the numbers from 0 to 9 with one number per line. Hint: Use carriage return (CR).
2) Use .FILL to put two numbers in the range 0 to 4 in memory. Write a program to calculate and

output the sum of these two numbers on the console.
3) Use .FILL to put a two-digit decimal number in memory. Print out this number on the console.
4) Output the numbers from 0 to 19.
5) Same as 2) but the two numbers are in the range 0 to 9.
6) Use .FILL to put ten numbers in memory. Write a program to print out the largest of these ten

numbers.

LC-3 Instructions Page 16 of 16

; input two one-digit numbers and print out the sum.
; Correct only if the sum is less than 10
 .ORIG x3000
 LD R3,nThirty ; load constant x-30
 LEA R0,Prompt ; print prompt to enter number
 PUTS
 GETC ; get first number
 OUT ; echo it
 ADD R0,R0,R3 ; convert ASCII to value
 ADD R1,R0,#0 ; save first number in R1

 LD R0,CR ; print Return
 OUT

 LEA R0,Prompt ; print prompt to enter number
 PUTS
 GETC ; get second number
 OUT ; echo it
 ADD R0,R0,R3 ; convert ASCII to value
 ADD R2,R0,#0 ; save second number in R2
 ADD R2,R1,R2 ; add R2 <- R1+R2

 LD R0,CR ; print Return
 OUT

 LEA R0,Sum
 PUTS
 JSR Convert ; call function to convert number to ASCII
 OUT
 HALT ; end of main program

;;;
; subroutine to convert number in R2 to ASCII
; need to add x30
Convert
 LD R0,Thirty
 ADD R0,R2,R0 ;
 RET

;;;
; start of constants

nThirty.FILL x-30
Thirty .FILL x30
CR .FILL x0D
Prompt .STRINGZ "Enter a number? "
Sum .STRINGZ "The sum is "

 .END

