Assembly Programming for the ATMega328 CPU

on the Arduino Uno
Reference:

https://dumblebots.com/2022/07/31/programming-arduino-and-avr-microcontrollers-using-the-

assembly-language/

https://docs.arduino.cc/built-in-examples/arduino-isp/ArduinolSP/

This document is a summary of the steps extracted from the above two references needed to write,
compile and upload assembly code to an ATMega328 CPU on an Arduino Uno board.

This document assumes you know how to work in the command window under Windows or Linux. All
the AVR Toolchain commands will be issued inside the command window.

1. ATMega328 CPU

2. Create this directory structure

[Assembly J

Directory names are bolded.

avr8-gnu-toolchain-win32_x86_64 avrdude-mingw32
avrdude
1
P 1 < 1
bin
avr-gcc, avr-ld, avr.objcopy
_ I J
s 2!
source
blink.S
S I J
(build)
blink.s, blink.o, blink.elf, blink.hex

3. Download the AVR Toolchain commands

All the commands are executed from the command window. They must be issued from the
same directory that they are located in since the system PATH variable doesn’t have the paths to
these directories. Alternatively, you can add these paths to the PATH variable so that these
commands can be executed from any directory.

e Download the GCC compiler AVR 8-Bit Toolchain (for Windows, Linux, or OSX) from

https://www.microchip.com/en-us/tools-resources/develop/microchip-studio/gcc-compilers

Copy the folder avr8-gnu-toolchain-win32_x86_64 in the zip file to inside the Assembly folder.
Open a command window. Go to the bin folder inside this directory.

To test your installation, enter the command avr-gcc —version

Command Prompt

E:\>cd \

E:\>cd Assembly

E:\Assembly>cd avr8-gnu-toolchain-win32_x86_6u
E:\Assembly\avr8-gnu—toolchain-win32_x86_6U>cd bin
E:\Assembly\avr8-gnu-toolchain-win32_x86_6l\bin>avr-gcc ——version
avr-gcc (AVR_8_bit_GNU_Toolchain_3.7.0_1796) 7.3.0

Copyright (C) 2017 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

E:\Assembly\avr8-gnu-toolchain-win32_x86_6u\bin>|

e Download the programmer (uploader) avrdude-6.4-mingw32.zip (or the latest version) from

https://download.savannah.gnu.org/releases/avrdude/

Copy the contents of the zip file into a directory named avrdude-mingw32.
Go to this directory.

To test your installation, enter the command avrdude.

Command Prompt
E:\Assembly\avr8-gnu-toolchain-win32_x86_s6u\bin>cd \
E:\>cd Assembly
E:\Assembly>cd avrdude-mingw32

E:\Assembly\avrdude-mingw32>avrdude
Usage: avrdude [options]
Options:
-p <partno> Required. Specify AVR device.
-b <baudrate=> Override RS-232 baud rate.
-B <bitclock> Specify JTAG/STK588v2 bit clock period (us).
-C <config-file> Specify location of configuration file.
-C <programmer> Specify programmer type.
-D Disable auto erase for flash memory
-i <delay> ISP Clock Delay [in microseconds]
-P <port> Specify connection port.
-F Override invalid signature check.
Perform a chip erase.
Perform RC oscillator calibration (see AVRO53).
<memtype>:r|w|v:<FiLenameb[:Format]
Memory operation specification.
Multiple -U options are allowed, each request
is performed in the order specified.
Do not write anything to the device.
Do not verify.
Disable safemode, default when running from a script.
Silent safemode operation, will not ask you if
fuses should be changed back.
Enter terminal mode.
<exitspec>[,<exitspec>] List programmer exit specifications.
<extended_param> Pass <extended_param> to programmer.
Verbose output. -v -v for more.
Quell progress output. —-q —q for less.
logfile Use logfile rather than stderr for diagnostics.
Display this usage.

avrdude version 6.4, URL: <http://savannah.nongnu.org/projects/avrdude/>

E:\Assembly\avrdude-mingw32>

4. Program an Arduino to use as an In-System Programmer (ISP) for
programming the ATMega328 CPU

1. Upload the ArduinolSP sketch to your Arduino Uno by selecting from the Arduino IDE menu
File / Examples / 11.ArduinolSP

and click on Upload. Once uploaded your Arduino will be programmed to be used as an ISP.

5. Connections for Programming the ATMega328 CPU

The Uno board with the ArduinolSP sketch (from Step 4) will be referred to as the Programmer.

A second Uno board where you want to upload and run the assembly code on the ATMega328 CPU will
be referred to as the Target.

Programmer Target
13 (SCK) 13 (SCK)
12 (MISO) 12 (MISO)
11 (MOSI) 11 (MOSI)
10 Reset
Gnd Gnd

5V 5V

2 @
kN

® nog ~
DIGITAL PWMC)Y

Programmer

Plug in the Programmer board and find the COM port that it is connected to.

6. Test Program

Copy the following blink program to a file named blink.S. Note that the extension must be capital "S".
Save this file inside the source directory.

; blink program
#include <avr/io.h>
.section .data
.section .bss

.section .text
.org 0x00
LDI R16, (1<<PB5)
LDI R17, (1<<PB5)
ouT _SFR_10_ADDR (DDRB), R16

LOOP: OUT _SFR_IO_ADDR (PORTB), R16
RCALL DELAY_1S
EOR R16,R17

RIMP LOOP

DELAY_1S:
LDI R20, 64 ; about 1 second delay
LDI R20, 20 ; about 0.5 second delay

DELAY1: LDI R21, 250
DELAY2: LDI R22, 250
DELAY3: DEC R22
NOP
BRNE DELAY3

DEC r21
BRNE DELAY2

DEC r20
BRNE DELAY1

RET

7. Compile the program

Navigate to the bin directory.

blink.S is the source assembly file located under the source directory inside bin.
Note that the extension for the source file must be "S".

The source file with the extension "S" is used in the first command below.

It must be this extension "S" otherwise it will not work.

Issue the following four commands from inside the bin directory.

avr-gcc -DF_CPU=16000000UL -mmcu=atmega328p -E source/blink.S -o source/build/blink.s
avr-gcc -mmcu=atmega328p -nostdlib -g -c source/build/blink.s -o source/build/blink.o
avr-ld source/build/blink.o -o source/build/blink.elf

avr-objcopy -0 ihex source/build/blink.elf source/build/blink.hex
Command Prompt

E:\Assembly\avr8—gnu-toolchain-win32_x86_6U\bin>avr-gcc -DF_CPU=1600000
OUL -mmcu=atmega328P -E source/blink.S -o source/build/blink.s

E:\Assembly\avr8-gnu-toolchain-win32_x86_6éU\bin>avr-gcc —-mmcu=atmega328
P -nostdlib —-g source/build/blink.s —o source/build/blink.o

E:\Assembly\avr8-gnu-toolchain-win32_x86_6U\bin>avr-ld source/build/bli
nk.o —o source/build/blink.elf

E:\Assembly\avr8-gnu-toolchain-win32_x86_6éU\bin>avr-objcopy -0 ihex sou
rce/build/blink.elf source/build/blink.hex

E:\Assembly\avr8-gnu-toolchain-win32_x86_6U\bin>

You should now have four files in the build directory, blink.s, blink.o, blink.elf and blink.hex.

8. Upload program to the Target ATMega328 CPU
1. Copy the blink.hex file into the avrdude-mingw32 directory.

2. Inthe command window, navigate to the avrdude-mingw32 directory.

3. Execute the command. Replace the COM port number with your port number.

avrdude -v -p atmega328p -c arduino -P COMG6 -b 19200 -U flash:w:blink.hex:i

[z Command Prompt

E:\Assembly\avr8-gnu-toolchain-win32_x86_6U\bin>cd ..
E:\Assembly\avr8-gnu-toolchain-win32_x86_6U>cd
E:\Assembly>cd avrdude-mingw32

E:\Assembly\avrdude-mingw32>avrdude -v -p atmega328p -c arduino -P COM6
-b 19280 -U flash:w:blink.hex:i

avrdude: Version 6.4
Copyright (c) Brian Dean, http://www.bdmicro.com/
Copyright (c) Joerg Wunsch

System wide configuration file is "E:\Assembly\avrdude-mingw32
\avrdude.conf"

Using Port : COM6
Using Programmer : arduino
Overriding Baud Rate : 192880

AVR Part : ATmega328P
Chip Erase delay : 9000 us
PAGEL : PD7

B52 : PC2

RESET disposition : dedicated
RETRY pulse : SCK
serial program mode : yes
parallel program mode : yes
Timeout : 200
StabDelay : 100
CmdexeDelay : 25
SynclLoops N

[z Command Prompt X 1=

avrdude: safemode: efuse reads as FD
avrdude: NOTE: "flash" memory has been specified, an erase cycle will b
e performed
To disable this feature, specify the -D option.
avrdude: erasing chip
avrdude: reading input file "blink.hex"
avrdude: writing flash (36 bytes):

Writing | $HHHHHAHHHEHEHEHEHHHHEH Y | 100% 0.1
s

avrdude: 36 bytes of flash written

avrdude: verifying flash memory against blink.hex:
avrdude: load data flash data from input file blink.hex:
avrdude: input file blink.hex contains 36 bytes

avrdude: reading on-chip flash data:

Reading | #HHHHHHHHHEHEHEHIHIHEHEHIHEHEE R | 100% 0.0
8s

avrdude: verifying

avrdude: 36 bytes of flash verified

avrdude: safemode: lfuse reads as FF

avrdude: safemode: hfuse reads as DE

avrdude: safemode: efuse reads as FD

avrdude: safemode: Fuses OK (E:FD, H:DE, L:FF)

avrdude done. Thank you.

E:\Assembly\avrdude-mingn32>

9. Test the program

1. You should see the blink program running on the target board with the led blinking at about 1
Hz.

2. Modify the code in step 6 to decrease the blink speed to about 0.5 Hz. There is a comment in
the code regarding this.

3. Repeat steps 7 to 8 to compile and upload the modified code. You should see the led blinking at
about 0.5 Hz.

